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Introduction:  Lunar lobate scarps, or thrust faults, 

are widespread across the lunar surface. They are 
among the youngest landforms on the Moon with some 
likely still active today [1-4]. Absolute model ages es-
timated using the size-frequency of impact craters show 
that most studied scarps were active in the late Coper-
nican (<50-100 Ma), and that fault activity causes sur-
face renewal and disturbance up to kilometers away 
from the scarp trace itself [5,6]. This finding has im-
portant implications for future human and robotic ex-
ploration as potential locations of resources exposed 
near the surface, and for potential landing-site hazards.  

We investigate the photometric and Kaguya MI-
derived optical maturity (OMAT) of surfaces around 
lobate scarps. Here we present preliminary results for 
the Lee-Lincoln (~20.30°N, 30.59°E), Henderson-2 
(~7.77°N, 152.07°E), and Feoktistov (~32.02°N, 
140.49°E) scarps. The objectives of this study focus on 
assessing whether photometric and OMAT investiga-
tions reveal distinctive results for surfaces disturbed by 
ground motion from seismic slip events, and whether 
these surfaces contain materials beneficial to future 
exploration.  

Methods: Optical Maturity Index – Lunar  soils 
change (mature) over time because of micrometeorite 
impacts, solar wind implanted gasses, and other space 
weathering effects. The most immature or fresh 
soils/regolith on the Moon appear optically bright in 
images created to lessen compositional effects and iso-
late optical maturity [7-10].  For example, craters with 
bright ejecta blankets in OMAT (i.e., high OMAT val-
ues) are younger than craters with darker ejecta blan-
kets; rough or sloped surfaces tend to be brighter/less 
mature in OMAT (regolith is continuously being “re-
freshed”). The OMAT value provides information di-
rectly relevant to landing site considerations including 
roughness, hazards, and soil composition; large- and 
small-scale roughness may be an important factor in 
sequestration of volatiles on the lunar surface [11]. 

Photometry – Photometry is a valuable tool for as-
sessing the potential variation of physical and composi-
tional properties of the regolith around scarps. We used 
Hapke formulations [12] and nonlinear optimization 
techniques in MATLAB to produce photometric pa-
rameter maps (5 mpp) of the scarps from Lunar Recon-
naissance Orbiter Camera (LROC) Narrow Angle Cam-

era (NAC) images and NAC-derived Digital Terrain 
Models (DTMs). Details of the methods can be found in 
[13,14]. The b-parameter of the single particle phase 
function within the Hapke model is of particular inter-
est owing to its observed correlation with physical vari-
ations (e.g., grain size/shape, glass content) in surface 
properties. 

Preliminary Results: None of the scarps we ana-
lyzed, nor their surroundings, show a distinctive signa-
ture in OMAT images. Lack of immaturity related to 
these ‘young’ features may be a consequence of (1) the 
slopes being too shallow to allow constant refreshing of 
material on the scarp ridge, or (2) an aspect of the on-
going scarp-forming processes that erases a distinct 
OMAT signature. The parameter maps do not reveal 
variations in b as a function of distance from each 
scarp. However, b-values are slightly higher on the tops 
of the scarps, most notably at Henderson-2 and Lee-
Lincoln, which may indicate differences in backscatter-
ing characteristics, (e.g., grain size/shape), between the 
scarp and its surroundings. 
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Figure 1. Hen-
derson-2 scarp. 
(left) LROC 
NAC 
M115319317 
[5].   (right) 
b-map, created 
using NAC 
M1159101897L. 


