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Introduction:  Results are reported from a new, 

ongoing lunar base study with a concise architectural 
program: build and operate a habitable lunar base that 
produces enough oxygen and hydrogen from lunar 
polar ice resources for four flights per year of a reusa-
ble lander shuttling between Gateway and the base. 

Context:  The RLSO study [1][2] developed  the 
first integrated design/operations analysis of a robotic, 
habitable, oxygen-producing lunar base. RLSO2 up-
dates this work with new assumptions: 1) resources – 
lunar polar ice instead of ilmenite; 2) solar power – 
polar lighting conditions instead of the 28-day equato-
rial cycle; 3) transportation – based on multiple flight 
systems now in development and planning; 4) base 
site – a range of options near, straddling, and inside 
permanently shadowed regions; 5) ISRU scenarios – 
for harvesting ice and constructing radiation shielding 
from regolith.  

Study structure:  Like the original study, RLSO2 
combines US experts in mission design, space archi-
tecture, robotic surface operations, autonomy, ISRU, 
operations analysis, and human space mission and 
lunar surface experience. Three members provide 
continuity from the original team. The integrated per-
formance of purpose-designed base elements is cap-
tured in a numerical operations model, allowing rapid 
iteration to converge system sizing, and building a 
legacy analysis tool that can assess the performance 
benefits and impacts of any proposed system element 
in the context of the overall base. 

We summarize study groundrules, assumptions, 
and methodology; present maturation status of the 
operations model, preliminary element designs com-
prising the base, and first-round base siting analyses; 
and describe quantitative findings to date. 

RLSO2 follows the original RLSO statement of 
task, but with contemporary assumptions: 1) harvest-
ing of water ice at a polar base rather than hydrogen 
reduction of ilmenite at a nearside mid-latitude base; 
2) use of a DHRO Gateway transportation node rather 
than low lunar orbit; 3) logistics scenarios incorporat-
ing lander downmass capacities in three ranges: 10s, 
1000s, and 10,000s kg rather than just a single, large 
NASA lander. 

Base siting analysis is informed by the Traverse 
Planning Tool developed by the Resource Prospector 
pre-project; datasets from multiple LRO instruments 
are synthesized into a time-varying, latitude-

longitude-specific illumination model, making insola-
tion and power storage duty cycle variable with base 
location and element geometry.  

Three resource and base siting schemes are ana-
lyzed: 1) entire base located in a PSR (permanently 
shadowed region), where the ice resource has highest 
concentration but the operating temperature is 
≤100 K; 2) resource recovery in a PSR but with base 
habitat and depot located in a nearby PLR (persistent-
ly lit region); 3) entire base located in a PLR, where 
the ice resource has lowest concentration but large 
traverse distances are avoided. 

Results:  Findings are divided into two categories: 
13 principles from RLSO [3] that RLSO2 validates to 
be generalizable; plus new conclusions specific to 
polar-ice ISRU in the 21st century. Some of these new 
findings are counterintuitive, or at least countercultur-
al in contemporary discussions, and bear on key archi-
tecture options like exploration scenarios, resource 
choice, base and node siting, use of solar and nuclear 
power, and volatiles extraction approaches.  
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