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Introduction:  Ground based radar observations of 

Mercury have yielded maps of bright and depolarizing 
features near the poles [1, 2] and subsequent radar meas-
urements isolated these abnormalities to the perma-
nently shadowed regions [3].  These features were at-
tributed to frozen water ice at the observed locations of 
the anomalies. Following these observations were the 
seminal papers based on the neutron spectrometer [4] 
and the Mercury Laser Altimeter (MLA) [5] on board 
the MErcury Surface, Space ENvironment, GEochem-
istry, and Ranging (MESSENGER) spacecraft, both of 
which were in agreement that the PSRs contained water 
ice covered with a thin layer of possible organic mate-
rial.  Generally, it is believed that water ice and other 
volatile organic material was delivered via meteoritic 
impacts [4].  Here, we present an alternative source term 
for molecular water based on our recent efforts model-
ling solar wind interactions on the lunar surface [6]. 

 Our model takes into consideration a well-known 
process known as recombinative desorption.  Here, the 
implanted hydrogen will diffuse to the grain surface re-
sulting in dangling M–OH bonds (M being a generic 
metal cation, e.g. Si, Al, Mg, Ti).  From here, neighbor-
ing M-OH sites will react to form molecular water, M-
OH + M-OH  MOM + H2O. Utilizing the estimated 
precipitating proton flux [7] and these known OH for-
mation and loss processes, an atomistic and molecular 
model describing the fate of solar wind-induced hy-
droxyl groups was applied to the surface of Mercury. 
Specifically, we incorporate experimentally derived dif-
fusion constants, cross sections and rates for interfacial 
OH formation and destruction involving water and hy-
drogen formation via recombinative desorption, photo-
destruction, and interfacial surface reactions with 
OH/H2O and the soil (serpentinization). 

Results: Results (Figure 1) show that molecular wa-
ter is easily formed at Mercury relevant temperatures 
where protons are impinging onto the surface. As ex-
pected the water adsorbed on the night side will subli-
mate upon reaching the dayside terminator where it will 
hop until it reacts with the surface via dissociative ad-
sorption (i.e. H2O + M  MOH + H) on the surface or 
physisorbs at a cold site i.e. night side or permanently 
shadowed regions. If the cold site is a permanently shad-
owed region, the frozen water is stable over geological 
time frames. Gas phase water will ultimately succumb 
to photo-dissociation, dissociative adsorption or molec-
ular re-adsorption at a cold spot on the planet’s surface.  

Consequently, a significant amount of water is not ex-
pected in the exosphere but is expected in permanently 
shadowed regions and near/on the poles 

 

 
Figure 1: Location of frozen molecular water on the 
surface on mercury after simulating solar wind implan-
tation and kinetics of recombinative desorption after six 
complete orbits.  Red lines designate day and night side 
terminators.  
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