The Young Age of the LAMP-Observed Frost in Lunar Polar Craters

W. M. Farrell1, D. M. Hurley2, M. J. Poston3, P. O. Hayne4, J. R. Szalay5, and J. L. McLain6,

1. NASA/Goddard Space Flight Center, Greenbelt MD,
2. Johns Hopkins University/Applied Physics Laboratory, Laurel, MD,
3. Southwest Research Institute, San Antonio, TX,
4. University of Colorado, Boulder, CO,
5. Princeton University, Princeton, NJ
6. University of Maryland, College Park, MD
Water Thermal Stability Model
Paige et al 2010
White areas= water stable at surface
Orange areas= water stable in first 10 cm
Stable = Ice loss rate of < 1 mm per billion yrs

FUV signature of > 1% icy regolith
LAMP 500nm – 1000 nm sensing depth
Hayne et al., 2015
Dark = cold polar crater
Blue= ratio of high and low wavelength bands

‘Frost’ sensed by the LRO/LAMP FUV system
Any low density icy regolith on the crater floor is also being disrupted!

- For an **exposed surface**, have added effects:
 - Have **solar wind plasma sputtering, micrometeoroid vaporization, and impact ejecta** that will also erode and release surface water from a 1% icy-regolith concentration
 - Disruption of the icy surface by ‘corpuscular’ or discrete injections of energy from the space environment
 - Conclude: Surface water not ‘stable’ to the space environment
Redistribution of top layer (0.5-1 μm) of the cold trap deposit by meteoric impact vaporization and impact ejecta

Water spills over crater onto topside by meteor impacts and plasma sputtering

Also, get a redistribution of water within the crater itself

1% water ice/regolith (soil) mixture on crater floor
How much water is released from the crater floors?

Environmental Release of Water from PSRs with 1% icy regolith mix (LAMP-like situation)

Non-Thermal Process (not driven by the ambient surface temperature - mostly)

Solar wind sputtering: \(S = YF \sim 8 \times 10^7 \) waters released/m\(^2\)-s

- Yield: \(Y = 4 \times 10^{-3} \) molecules released per incident proton at 1% water-regolith mix
- Flux: \(F \sim 2 \times 10^{10} / \text{m}^2\)-s (\(\sim 1\% \) of the solar wind gets diverted to crater floor)
- Large variability in ambipolar diverted proton influx to crater floor

Micrometeoroid Impact Vaporization: \(4 \times 10^9 \) waters released/m\(^2\)-s

- Impacts release vapor: \(1.2 \times 10^{-14} \) kg/m\(^2\)-s [Pokorny et al., 2019]
- 1% wt ice in the surface being vaporized yields \(\sim 1.2 \times 10^{-16} \) kg of water/m\(^2\)-s

Impact Ejecta: \(7 \times 10^9 \) waters released/m\(^2\)-s

- Upward particle flux \(F \sim 13 / \text{m}^2\)-s for \(a > 0.1 \) microns [Szalay et al., 2019]
- \(<a> \sim 0.5 \) microns and \(<m> \sim 1.3 \times 10^{-15} \) kg
- Upward particulate mass flux: \(F<m> \sim 2 \times 10^{-14} \) kg/m\(^2\)-s
- 1% wt ice in this upward flux yields \(\sim 2 \times 10^{-16} \) kg of water/m\(^2\)-s
Ambipolar Expansion Model into Shoemaker Crater

Analytical model of Solar Wind Plasma Inflow into Craters [Farrell et al., 2010; Jackson et al., 2011; Zimmerman et al., 2011, 2012; Rhodes and Farrell, 2019]

Solar wind flow

These 1 keV protons are a source of sputtering to remove surface frost
Environmental Release of Water from PSRs with 1\% icy regolith mix (LAMP-like situation)

Non-Thermal Process (not driven by the ambient surface temperature - mostly)

Solar wind sputtering: \(S = Y F \sim 8 \times 10^7 \) waters released/m\(^2\)-s

Yield: \(Y = 4 \times 10^{-3} \) molecules released per incident ion at 1\% water-regolith mix
Flux: \(F \sim 2 \times 10^{10} / \text{m}^2\)-s (about 1\% of the solar wind gets diverted to crater floor)
Large variability in ambipolar diverted proton influx to crater floor

Micrometeoroid Impact Vaporization: \(4 \times 10^9 \) waters released/m\(^2\)-s

Impacts release vapor: \(1.2 \times 10^{-14} \) kg/m\(^2\)-s [Pokorny et al., 2019]
1\% wt ice in the surface being vaporized yields \(\sim 1.2 \times 10^{-16} \) kg of water/m\(^2\)-s

Impact Ejecta: \(7 \times 10^9 \) waters released/m\(^2\)-s

Upward particle flux \(F \sim 13 / \text{m}^2\)-s for \(a > 0.1 \) microns [Szalay et al., 2019]
\(\langle a \rangle \sim 0.5 \) microns and \(\langle m \rangle \sim 1.3 \times 10^{-15} \) kg
Upward particulate mass flux: \(F \langle m \rangle \sim 2 \times 10^{-14} \) kg/m\(^2\)-s
1\% wt ice in this upward flux yields \(\sim 2 \times 10^{-16} \) kg of water/m\(^2\)-s
Environmental Release of Water from PSRs with 1% icy regolith mix (LAMP-like situation)

Non-Thermal Process (not driven by the ambient surface temperature - mostly)

Solar wind sputtering: \(S= YF \sim 8 \times 10^7 \) waters released/m\(^2\)-s
 Yield: \(Y = 4 \times 10^{-3} \) molecules released per incident ion at 1% water-regolith mix
 Flux: \(F \sim 2 \times 10^{10}/m^2\)-s (about 1% of the solar wind gets diverted to crater floor)
 Large variability in ambipolar diverted proton influx to crater floor

Micrometeoroid Impact Vaporization: \(4 \times 10^9 \) waters released/m\(^2\)-s
 Impacts release vapor: \(1.2 \times 10^{-14} \) kg/m\(^2\)-s [Pokorny et al., 2019]
 1% wt ice in the surface being vaporized yields \(\sim 1.2 \times 10^{-16} \) kg of water/m\(^2\)-s

Impact Ejecta: \(7 \times 10^9 \) waters released/m\(^2\)-s
 Upward particle flux \(F \sim 13/m^2\)-s for grain radius \(a > 0.1 \) microns [Szalay et al., 2019]
 \(<a> \sim 0.5 \) microns and \(<m> \sim 1.3 \times 10^{-15} \) kg
 Upward particulate mass flux: \(F<m> \sim 2 \times 10^{-14} \) kg/m\(^2\)-s
 1% wt ice in this upward flux yields \(\sim 2 \times 10^{-16} \) kg of water/m\(^2\)-s
Sporadic meteoroid sources Helion, Antihelion, Apex, Anti-apex sense by LDEX
Added north toroidal and south toroidal sources
\(<a> \sim 0.5 \text{ microns}\)
Comparison of Thermal vs Non-Thermal Ice Loss Processes

Water Loss Rate: Sublimation, Desorption, and Space Environment

- Non-thermal processes dominant
- Impact Ejecta (1% Ice)
- IV and Sputtering (1% Ice)
- Sublimation
- Desorb, 0.46 eV
- Desorb, 0.5 eV
- Desorb, 0.6 eV
- Desorb, 0.7 eV

Log of the Emitted Flux ($H_2O/m^2.s$)

Temperature (K)
Time to Erode a LAMP-sensed 1% icy regolith Layer (500 nm in depth)

- Assume LAMP UV wavelength extends 3 wavelengths or 500 nm into surface
- 1% icy regolith = 4×10^{20} water molecules per square meter in 500 nm layer

<table>
<thead>
<tr>
<th>Process</th>
<th>Water Loss Rate (H_2O/m^2-s)</th>
<th>Water Erosion Time (kyrs)</th>
<th>Water Exospheric Density (cm$^{-3}$)</th>
<th>Water fraction returning within 20 km of source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sputtering</td>
<td>8×10^7</td>
<td>158</td>
<td>0.04</td>
<td>0.04-0.3%</td>
</tr>
<tr>
<td>Impact Vaporization</td>
<td>4×10^9</td>
<td>3.1</td>
<td>1.5</td>
<td>1%</td>
</tr>
<tr>
<td>Impact Ejecta</td>
<td>7×10^9</td>
<td>1.8</td>
<td>10 (in dust)</td>
<td>13%</td>
</tr>
</tbody>
</table>

Conclude:
- The icy-regolith LAMP is sensing has to be dynamics on the kiloyears time scales
- The material that gets redistributed within a 40 km polar crater is primarily icy particulates
Haworth
\[<T_{\text{max}}>=75\]

Off/On Ratio

(b) Off/On ratios greater than 1.2

% of Values > 1.2

Temperature (K)

LAMP data from set used by Hayne et al 2015

> 1% icy regolith
One non-unique interpretation:

Space environment erodes this deposit.
One non-uniform interpretation:

Space environment erodes this deposit forming a dynamic thin frost in warm regions that migrates to a local cold trap or back to the original deposit.
Debris Field Model

30% icy regolith outcrop (Li et al., 2018)

See details in Farrell et al., GRL 2019
Conclusions

• The cold trap top layer is continually disrupted by the injection of corpuscular or discrete space environmental energy events

• LAMP possibly observing a surface frost (in top 500 nm) that is a convolution of thermal process (sublimation/condensation or sorption) modulated/enveloped by space environmental ‘disruption’ processes
 – May explain why the lunar frost in PSRs does not strictly follow temperature (as pointed out by Fisher et al., 2017)

• LAMP observed icy regolith layer (~500 nm) is dynamic on time scales of a few kiloyears
Zimmerman et al. 2012

Expansion of solar wind plasma into polar crater

Ambipolar Expansion of Solar Wind into PSRs – 2D Particle-in-Cell simulation [Zimmerman et al., 2012]

SW proton flux actually reaching the floor of the crater is about 1% of the original solar wind proton flux
- 100-m x 100-m area on cold trap floor
- 10^6 seconds or ten days
- Meyer-Vernet et al [2009] predicts about 1111 impact events in range from 10^{-7} kg to 10^{-10} kg
- Simulated water molecules released as a Maxwellian distribution at 4000K

Farrell et al., 2015
Comparison of Thermal vs Non-Thermal Ice Loss Processes

Water Loss Rate: Sublimation, Desorption, and Space Environment

- Sublimation
- Non-thermal processes dominant
- Impact Ejecta (1% Ice)
- IV and Sputtering (1% Ice)
- Desorb, 0.46 eV
- Desorb, 0.5 eV
- Desorb, 0.6 eV
- Desorb, 0.7 eV

Log of the Emitted Flux (H$_2$O/m2-s)

Temperature (K)
Environmental Losses to Polar Water Frost

Frost is Exposed to the Space Environment: Its Dynamic! These environmental release processes may exceed those from sublimation.