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Long-Term Exploration of the Moon
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High priority target is the Lunar South Pole and its PSRs:

Credit: NASA Ames
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Fundamental question: How trafficable is the South Pole?
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Can we explore the polar regions with crew and robotic ground vehicles, e.g. the Lunar Electric Rover (LER)?

Apollo LRV - Moon Spirit MER - Mars
Credit: NASA JPLCredit: NASA

What are the geomechanical properties of the South Polar regolith?

Can we derive these properties locally instead of using extrapolated Apollo/ Surveyor/ Lunokhod values?



Rockfalls and their tracks as indicator for geomechanical properties (Bickel et al., 2019)
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Deep Learning-driven mapping of the South Pole
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200 m
Detail of M111422030LC

- Neural Network that detects rockfalls in NAC imagery

(Bickel et al., 2018)

Poster #23

- >2000 images & >200 Billion pixels scanned
in less than one day

- User-controlled

- 79 boulders with tracks found from 85°S to 90°S

including 58 boulders with tracks in the immediate vicinity
of Shackleton crater and the South Pole

Soon available on

Moon Trek



Qualitative observations of tracks
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Tracks in various different lunar regions exhibit similar track appearances, suggesting similar mechanical properties:
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Quantitative determination
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Static bearing capacity qf:

qf

Customized:
Terzaghi (1951)
Hansen (1970)

Applications:

Lander / rover sinkage
Foundations



Rolling Resistance Coefficient Rcc:

Quantitative determination
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Customized:
Carrier (1991)

Applications:

Rover energy consumption
Rover slope climb ability



South Pole bearing capacity as function of depth:

Results of quantitative analysis
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Bearing capacity envelope validated 
with Apollo and Lunokhod data

Bickel et al., 2019

Mean Crr = 0.05

~ large worn cobbles



Bearing capacity as function of slope angle (in depth range 0 to 10 cm):

Results of quantitative analysis
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Bearing capacity as function of topography (for depth range 0 to 10 cm)
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PSR locations taken from: 
McGovern et al., 2013



Summary

12

- A Neural Network has been used to map 79 rockfalls at the lunar South Pole

- SP Boulder track appearance is similar to those in highland (and other) regions, suggesting similar properties

- SP Bearing Capacity estimates are in line with previous studies and with in-situ observations
landers, rovers, and crew should not encounter sinkage-related issues

- Trafficability information has been summarized in map products to support ongoing mission planning efforts

- Lunar soil mechanics should be investigated in-situ (issues in the past)

how can Artemis & CLPS missions help to advance our knowledge & minimize risk?

Neural Network (TGRS): Moon Trek: Analysis of rockfalls (JGR):



Thank you! 

Credits:  LPI CLSE
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- Previous work by Bickel et al., 2018, in IEEE Transactions on Geosciences and Remote Sensing

- Single-stage object detector (RetinaNet)
- trained with ~9000 original images, augmented to > 1.2 million images during training
- CNN is scale and rotation invariant



Detection and Mapping performance 1/3

1. CNN determines the location of rockfalls on the surface of the Moon

2. CNN estimates the diameter of each mapped rockfall (boulder)
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Detection and Mapping performance 2/3

CNN performance is almost independent from NAC resolution and lighting conditions (TP, true positive):

Sun EW, high res Sun nadir, low resSun WE, high res



Detection and Mapping performance 3/3

Extreme image geometry and lighting conditions cause detection issues (FN & FP, false negatives & false positives):



CNN detections are used for network re-training to improve performance over time:

Example detections: various sizes, albedo, track shapes, illumination, etc.



Preliminary Mapping Results 2/5



South Pole Boulders
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200 m
Detail of M111422030LC

Shackleton Crater

First landing site?

Mons Malapert

Permanent structures?



South Pole Boulders
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200 m
Detail of M111422030LC

- South Pole rockfalls are smaller

- ~ are rounder

- ~ occur on steeper slopes

- ~ have shallower tracks

- ~ have shorter runouts

Observations might be biased by the 
illumination conditions & topography



Quantitative determination
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Terzaghi (1948)

Static bearing capacity qf:

!" = 1.3'() + !+(, + 0.3./012(3
Cohesion Surcharge Friction

qf			=cNcscdcicbcgc+	qoNqsqdqiqbqgq+	0.5γBHNγsγdγiγbγgγ
Cohesion Surcharge Friction

Hansen (1970)

Most relevant input:

- Density           - Internal friction angle             - Boulder / Track dimensions



Quantitative determination
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Coefficient of Rolling Resistance Crr:
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,-
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Carrier (1991)          ,- = 5∗6
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A (k coefficient of subgrade reaction, related to bearing capacity)

(n exponent of soil deformation)



Terzaghi
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Terzaghi (1948) Assumptions

• Circular flat footing

• Boulder and track are on flat terrain

• Static load assumption



Hansen
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Hansen (1970) Assumptions

• Rectangular surface

• Load and footing inclination values i and b are 
neglected



- Boulder long and short diameter      - Track width      - Shadow length

Cross Section
of track

Detail of  M175375107LE

Boulder / Track dimensions
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Map view

Measurement in NAC imagery:



Measurements
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Resolvable depth of track is dependent on spatial resolution of the used sensor (LRO NAC) = ~0.5 m/pixel:

shallowest measured tracks are ~0.10 m deep

there is a sampling gap between the surface and this depth

Additional challenge:

Large incidence angles could potentially cause errors

Limitations
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Density
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Soil density values are selected from Apollo core tube analysis that best represent pyroclastic, highland, and mare material:

Highland values have been used as approximation for SP & PSR material

Terrain Sample # ! (g/cm3)
Literature values*

! (g/cm3)
Value used

Pyroclastic 15010 1.79-1.91a 1.85

Highland/ South Pole 64001 1.66b 1.66

Mare 12025 1.96c 1.96

a, Mitchell et al., 1972a (Apollo 15 preliminary report)
b, Mitchell et al., 1972b (Apollo 16 preliminary report)
c, Scott, 1971
* Density values for 30 - 60 cm



Map fusion for Future Exploration
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PSR locations taken from: 
McGovern et al., 2013



DEMs
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DEMs
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2.5 km 4.5 km2.5 km

Mare Pyroclastic Highland

Detail of M1162383484RC Detail of M1162262452RC Detail of M1097430107LC



Internal friction angle (Φ)
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Values for Φ are reported in the literature ranging from 13 to 50° (Melosh, 2011)

We measured the angle of repose of dry granular flows to refine Φ on local scales:

Detail of M1162383484RC
300 m

Region Φ

Pyroclastic 31°

Highland & SP 30°

Mare 28°

PSR 29°



Imagery
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Lunar Reconnaissance Orbiter images are used to search for boulders with tracks

à Selected images have spatial resolutions of 0.38 to 1.27 m/pix

Detail of LRO M135433752LCDetail of LO 5168_h2
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1967
2013



Bearing capacity as function of depth and slope:

Results of quantitative analysis

36



Comparison to Earth
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• PSR data is skewed as a result of 
only shallow tracks

• Bearing capacities are equivalent to 
medium dense sand

• Bearing Capacity at LPDs and PSRs 
are statistically higher at shallow 
depths

[14]



Bearing capacity estimate can be used to

assess technical specifications of rovers that

potentially are to traverse LPDs in the future:

for example the Lunar South Pole

and to estimate “worst case” wheel sinkage

scenarios for PSRs

soil at ~10 cm depth appears able to bear
high loads 

Application of this work
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Excessive boulder track depth
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Bart et al., 2011 – Small crater morphology
Fa and Jin, 2010 – Multi-channel brightness temperature inversion
Oberbeck and Quaide, 1968 – Crater morphology
Shuratov anf Bondarenko, 2011 – Radar and optical model



Lunar soil mechanics is important  – and not completely understood
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Example: Apollo 15 LRV and crew tracks illustrate changes of soil properties on small local scales
how can Artemis & CLPS missions help to advance our knowledge?

Bootprint: shear failure on slope?

Along-track wheel sinkage variations?

Modified from AS15-90-12194HR



Lunar soil mechanics is important  – and not completely understood
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Example: Apollo 15 LRV and crew tracks illustrate changes of soil properties on small local scales
how can Artemis & CLPS missions help to advance our knowledge?

Along-track wheel sinkage variations?

Cyclic loading?


